AMORADIN, AMORADICIN AND AMORADININ, THREE PRENYLFLAVANONES FROM AMORPHA FRUTICOSA

Zs. Rózsa, J. Hohmann, K. Szendrei, I. Mester* and J. Reisch*

Department of Pharmacognosy, University Medical School, Szeged, Hungary; *Institute of Pharmaceutical Chemistry, Westfalian Wilhelm University, Münster, West Germany

(Revised received 15 November 1983)

Key Word Index-Amorpha fruticosa; Leguminosae; amoradini; amoradinin; amoradinin; prenylated flavanones.

Abstract—Three new prenylflavanones, amoradin, amoradicin and amoradinin, were isolated from the root bark of *Amorpha fruticosa*. Their structures were deduced from chemical and spectral evidence.

INTRODUCTION

Continuing our investigations on the benzene-soluble constituents of the root bark of Amorpha fruticosa [1-4], we have isolated three new prenylflavanones in crystalline form: amoradin (mp 51-52°), amoradicin (mp 60-65°) and amoradinin (mp 51-54.5°). This paper reports their structures as 1, 2 and 3, respectively, based on spectroscopic evidence as well as chemical transformations.

RESULTS AND DISCUSSION

Phenolic hydroxyl groups were indicated in each molecule by positive ferric chloride tests as well as strong hydroxyl IR absorption at ca 3350 cm⁻¹. Flavanone-type structures were suggested for 1–3 by UV and ¹H NMR data [5]. UV $\lambda_{\text{max}}^{\text{MeOH}}$ nm (log ε): 1 285 (4.40), 362 (3.81); 2 286 (4.25); 363 (3.68); 3 286 (4.40), 362 (3.70); ¹H NMR (90 MHz, CDCl₃): 1 δ 5.22 (m, H-2), 2.95 (m, H-3); 2 5.20 (m, H-2), 2.95 (m, H-3); 3 5.27 (m, H-2), 2.86 (m, H-3).

The ¹H NMR spectra of 1 and 2 showed signals for two C-linked 3,3-dimethylallyl (prenyl) side chains, a chelated hydroxyl group and a methoxyl substituent. ¹H NMR: 1: δ 12.03 (s, OH), 3.75 (s, OMe), 5.22 (m, $-CH_2-CH=$), 3.27 (m, $-CH_2-CH=$), 1.78 (s), 1.65 (s), 1.61 (s), 1.56 (s, 4 × Me); 2: 12.00 (s, OH), 3.75 (s, OMe), 5.20 (m, $-CH_2-CH=$), 3.27 (m, $-CH_2-CH=$), 1.77 (s), 1.64 (s, 4 × Me). The multiplet

at $\delta 6.89$ indicated a 3',4'-disubstituted ring B in 2, and the doublets at $\delta 7.30$ (J=9 Hz) and 6.86 (J=9 Hz) characterized a 4'-substituted ring B in 1.

A retro-Diels-Alder reaction of the parent ions resulted in the well-known fragmentation pattern of flavanones [5]. The [A]⁺ fragment was identical in both compounds (m/z 302) showing ring A to be substituted by a chelated

Table 1. 13C NMR spectral data of compounds 1 and 2

<u>с</u>	1	2	С	1	2	C	1	2
2	78.42	78.41	1'	130.08	131.41	1"	21.23	22.32
3	42.47	43.54	2′	127.72	114.18	2"	122.85	122.76
4	197.58	197.63	3′	115.53	143.88	3"	131.29	131.66
4a	104.42	105.47	4'	157.07	143.98	4′′	17.85	17.83
5	154.42	158.28	5′	115.53	115.71	5"	24.77	25.67
6	114.15	113.50	6′	127.72	119.02	1′′′	21.68	22.77
7	164.15	165.36	OMe	61.06	61.61	2""	123.07	122.86
8	122.85	115.42				3′′′	131.62	131.86
8a	158.40	159.68				4′′′	17.85	17.83
						5'''	24.77	25.67

Chemical shifts in δ values from internal TMS for CDCl₃ solutions at 22.6 MHz.

hydroxyl, a methoxyl and two prenyl groups. According to the fragment $[B]^+$, 1 has a hydroxyl $(m/z \ 120)$ in the 4'-position, while 2 has two hydroxyl groups $(m/z \ 136)$ in the 3',4'-position.

The substitution pattern of ring A was determined by the ¹³C NMR chemical shifts (Table 1), by placing the methoxyl group at C-7 and the prenyl substituents at C-6 and C-8 in 1 (5,4'-dihydroxy-7-methoxy-6,8-di-C-prenylflavanone) and 2 (5,3',4'-trihydroxy-7-methoxy-6,8-di-C-prenylflavanone).

The ¹H NMR spectrum of 3 showed two methoxyl groups (δ 3.91, 3.75) and a chelated hydroxyl group (δ 12.02). Methylation gave a product which was identical to the dimethyl ether of 2. Compounds 2 and 3 had identical UV spectra with diagnostic reagents, thus one of the methoxyl groups in 3 must be at C-7. On the basis of these data it could not be decided whether the second methoxyl is at the C-3' or at the C-4'-position. The structural investigations could not be extended because of scarcity of the isolated compound.

EXPERIMENTAL

Extraction and isolation. Dried, powdered root bark of A. fruticosa L. (14 kg) was percolated with MeOH (70 l.). The extract

was evapd to 61., diluted with $\rm H_2O$ (61.) and extracted with $\rm C_6H_6$. Evapn of the $\rm C_6H_6$ fraction yielded a brown, oily residue (290 g), which was fractioned on a silica gel column with petrol and petrol- $\rm CH_2Cl_2$ (19:1, 9:1, 4:1, 7:3, 1:1), then on a polyamide column (MeOH-H₂O, 2:3, 3:2, 7:3, 4:1). The flavanone-containing fractions were purified on silica gel prep. layers in *n*-hexane-Me₂CO (4:1), *n*-hexane-EtOAc (4:1) and $\rm C_6H_6$ -EtOAc (19:1). By this method, 10 mg of amoradin (1), 610 mg of amoradicin (2) and 1.5 mg of amoradinin (3) were obtained in crystalline form. R_f ($\rm C_6H_6$ -EtOAc, 19:1): 1 0.28; 2 0.09; 3 0.42; (*n*-hexane-Me₂CO, 4:1): 1 0.22; 2 0.10; 3 0.23.

REFERENCES

- Rózsa, Zs., Hohmann, J., Czakó, M., Mester, I., Reisch, J. and Szendrei, K. (1981) Proc. Int. Bioflavonoid Symp. 245.
- Hohmann, J., Rózsa, Zs., Reisch, J. and Szendrei, K. (1982) Herba Hung. 179.
- Rózsa, Zs., Hohmann, J., Reisch, J., Mester, I. and Szendrei K. (1982) Phytochemistry 21, 1827.
- Rózsa, Zs., Hohmann, J., Szendrei, K., Reisch, J. and Mester, I. (1982) Heterocycles 19, 1793.
- Harborne, J. B., Mabry, T. J. and Mabry, H. (1975) The Flavonoids. Chapman & Hall, London.

Phytochemistry, Vol. 23, No. 8, pp. 1819-1821, 1984. Printed in Great Britain.

0031-9422/84 \$3.00 + 0.00 © 1984 Pergamon Press Ltd.

PHENOLIC DERIVATIVES FROM ARTEMISIA CAMPESTRIS SUBSP. GLUTINOSA

J. DE PASCUAL TERESA, M. S. GONZÁLEZ, M. R. MURIEL and I. S. BELLIDO

Department of Organic Chemistry, Salamanca University, Spain

(Revised received 6 January 1984)

Key Word Index—Artemisia campestris; Compositae; flavonoids; acetophenone derivatives.

Abstract—From the hexane extract of Artemisia campestris subsp. glutinosa, sakuranetin, dihydroquercetin-7,3'-dimethyl ether and three acetophenone derivatives identified as 3-[4-acetoxyisopent-2(Z)-enyl]-4-hydroxyacetophenone, 3-[4-acetoxyisopent-2(E)-enyl]-4-hydroxyacetophenone and 3-(3-acetoxymethyl-2-hydroxybut-3-enyl)-4-hydroxyacetophenone, have been isolated.

INTRODUCTION

Column chromatography of the weakly acidic fraction of the hexane extract of Artemisia campestris L., subsp. glutinosa (Gay ex Besser) Batt., afforded the previously reported acetophenone derivatives [1, 2], sakuranetin [3], dihydroquercetin-7,3'-dimethyl ether [4] and three acetophenone derivatives, 1-3.

RESULTS AND DISCUSSION

Compounds 1 and 2 were chromatographically very similar and showed practically the same spectral properties: $[M]^+$ at m/z 262 $(C_{15}H_{18}O_4)$; IR spectra with

bands at v_{max} 3300 (OH), 1680 (C=O), 1640 (C=C), 1600, 1500 (aromatic) and 1740, 1270 (OAc) cm⁻¹; the ¹H NMR spectra showed the presence of one 1,3,4-trisubstituted aromatic ring, the substituents being identified as COMe, OH and 4-acetoxyisopent-2-enyl groups (Table 1). The only significant difference was the signal due to the CH₂OAc groups, which appeared in both as singlets, but at δ 4.72 in 1, and 4.45 in 2. This difference suggested that 1 and 2 may be one pair of (Z) and (E) stereoisomers [2]. The stereochemistry (Z) for 1 and (E) for 2, was confirmed by acetylation and saponification of 1 and 2, which gave 1a or 2a and 1b or 2b, respectively. Compounds 1b and 2b were identical in all respects with those already isolated from A. campestris [2].